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Scheme II 

E : R 1 = Me, R2 = H R 

Z : R1 = H , R2 = Me I '. / R l 

R3 = CH2CH(CH3J2 ^Z^~X ^ f R 3 
O 

as an oil (10): [ a ] D +38°; NMR 0.82 (s, 3 H, C-18 Me), 0.88 
(d, J = 7 Hz, 6 H, C-26,27 Me), 1.04 (s, 3 H, C-19 Me), 2.79 
(t, J = 2.5 Hz, 1 H, C-6a H), 3.33 (s, 3 H, C-6/3 OMe), 5.31 
(br s, 1 H, C-16 H); IR 1710 cm - 1 . Catalytic hydrogenation 
of the 16-ene 10 with platinum black in ethyl acetate from the 
a side12 fixes the C-17a H stereochemistry and yielded the 
crystallinedihydrocompound 11 (96%): mp72 0C; [ a ] D +38°; 
NMR 0.75 (s, 3 H, C-18 Me), 0.90 (d, J = 7 Hz, 6 H, C-26,27 
Me), 1.01 (s, 3 H, C-19 Me), 2.76 (t, J = 2.5 Hz, 1 H, C-6a 
H), 3.28 (s, 3 H, C-6/30Me); IR 1710cm-'. Hydrolysis of the 
cyclo protecting group with dilute sulfuric acid yielded the 
known 23-ketocholesterol13 12 (84%): mp 145-146 0 C; [a]D 

- 4 3 ° ; N M R 0.72 (s, 3 H, C-18 Me), 0.92 (d, J = 6 Hz, 6 H, 
C-26,27 Me), 1.02 (s, 3 H, C-19 Me), 3.50 (br m, C-3a H), 
5.39 (br s, 1 H, C-6H); IR 3350, 1710 cm- ' . Wolff-Kishner 
reduction of 12 gave cholesterol (1) in 97% yield, that was 
identical in all respects (1H NMR, 13C NMR MS, IR, and 
GLC retention time) with an authentic sample. 

20-Isocholesterol (2) was synthesized in a similar way from 
the isomeric Z-allylic acetoacetate (8). Carroll reaction of the 
Z-olefinic ester 8 (oil) [[a]D - 3 0 ° ; NMR 0.80 (s, 3 H, C-18 
Me), 0.89 (d, / = 7 Hz, 6 H, ester dimethyl), 1.03 (s, 3 H, C-19 
Me), 1.59 ( d , / = 8 Hz, 3 H, C-21 Me), 5.48 (d, q , / = 2 and 
8 Hz, 1 H, C-20 H), 5.83 (br s, 1 H, C-16 /3H)] in refluxing 
xylenes for 4 h yielded the rearranged product 13 (62% yield, 
oil) [[a]D +32°; NMR 0.87 (s, 3 H, C-18 Me), 0.92 (d, J = 
6 Hz, 6 H, C-26,27 Me), 1.07 (s, 3 H, C-19 Me), 1.07 (d, J = 
6 Hz, 3 H, C-21 Me), 5.41 (brs, 1 H, C-16 H); IR 3040, 1710 
cm - 1 ] with 33% recovery of 814 (see Scheme II). After cata
lytic hydrogenation of 13, the dihydro compound 14 (an oil) 
[ [a ] D +38°; NMR 0.73 (s, 3 H, C-18 Me), 0.90 (d, J = 6 Hz, 
6 H, C-26,27 Me), 1.02 (s, 3 H, C-19 Me); IR 3030, 1710 
cm - 1 ] was converted into 23-keto-20-isocholesterol (15, 82%) 
[mp 143-145 0 C; [a]D - 4 5 ° ; NMR 0.71 (s, 3 H, C-18 Me), 
0.75 (d, J = 7 Hz, 3H, C-21 Me), 0.91 (d, J = 6 Hz, 6 H, C-
26,27 Me), 1.00 (s, 3 H, C-19 Me), 3.50 (br m, 1 H, C-3 H), 
5.39 (m, 1 H, C-6 H); IR 3250, 1710, 1080 cm"1] from 14 by 
treatment with dilute sulfuric acid. Wolff-Kishner reduction 
of 15 gave 20-isocholesterol (2) in quantitative yield [mp 
149-151 0C; [a]D - 5 5 ° (lit.15 mp 152-154 0 C; [a]D - 4 2 °); 
N M R 0.69 (s, 3 H, C-18 Me), 0.82 (d, J = 6 Hz, 3 H, C-21 
Me), 0.88 (d, J = 6 Hz, 6 H, C-26,27 Me), 1.02 (s, 3 H, C-19 
Me), 3.49 (br m, 1 H, C-3 H), 5.35 (m, 1 H, C-6H)], which 
showed a depression of the melting point on admixture with 
authentic cholesterol. The retention time of 2 on GLC is shorter 
than that of cholesterol (1). Thus, these results provide a useful 
method for stereocontrolled introduction of the desired C-20 
stereochemistry in steroid side-chain synthesis via Claisen 
rearrangement and related reactions. 
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An Efficient and Versatile Generation of o-Xylylenes 
by Fluoride Anion Induced 1,4 Elimination of 
o-(a-Trimethylsilylalkyl)benzyltrimethylammonium 
Halides 

Sir: 

Cycloaddition of olefins to o-xylylenes provides a convenient 
synthetic method for the preparation of tetrahydronaphthalene 
derivatives. The o-xylylene moiety is generated in situ by the 
metal induced1 or thermal2 1,4 elimination reactions of the 
corresponding o-xylylene derivatives such as o-xylylene di-
halides and o-methylbenzyltrimethylammonium hydroxides. 
Intramolecular cycloaddition of o-xylylenes generated by 
electrocyclic ring opening of substituted benzocyclobutenes 
was reported recently,3 which constitutes a new approach to 
the synthesis of polycyclic ring systems including natural 
products. 

Herein we report an efficient and versatile method for the 
generation of o-xylylene intermediates (2) by fluoride anion 
induced 1,4 elimination4 of o-(a-trimethylsilylalkyl)ben-
zyltrimethylammonium halides (1). A simple and mild gen-
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Table I. Cycloadditions of o-Xylylenes with Olefins and Acetylenes 

Olefins or Acetylenes 

(Molar equiv) 

Products 

(Isolated Z)' 

.CH, S IMe, 

C l V~3 ,e 
1 ^ X CH NMe Cl^ 
Ia-Cl 

r̂ Y CH-SiMe3 3) 
^ - ^ C H NMe Br" 

ciS' -EtO CCH=CHCO 

(3) 

CH =CHCNb 

(3) 

CH =CHC0 Me 

Et 

(3) 

EtO CCsCCO2Et 

(1 .3) 

oa 
do 

3- i i 

OCr' 
3_xiii 

CO E t 
2 ( 4 6 ) d 

CO2Et 

( 8 2 ) ' 

.CO Me . 
1 ( 9 0 ) r 

Ia-Br 
4 - i 

CO Et 
1 U6) 

CO2Et 

OS) 

Me 
I aCHSiMe. 

CH NMe 1® 

lb 

n-Bu 
I 

^ ^ CH2NMe3 I3 

Ic 

n-HeK 
I 
CHSiMe, 

CH2NMe3 V 
Id 

CH2=CHCN 

(3) 

CH2=CHCO Me 

(1.1) 

MeO CC=CCO Me 

(1.1) 

CN 

n-Bu 

^ ^ ^.CO 2Me 

(80) g, h, i 

(88)E 

3-v^ 

n-Hex 

4-ii 

CO2Me 

CO,Me 
(79) h, j, k 

" Yields are based on ] used and not optimized. * CH2CI2 solvent. c CH3CN solvent. d Reference 14. e Reference 2. /Reference Ie. 
1 Contaminated with another regioadduct (<20%). * A cis and trans mixture. ' Reference 15. ' Contaminated with olefinic isomerization 
products (<10%). * Reference 16. 

R 
I 
CHSiMe, 

CH2NMe3 X 

X=Cl 1 

eration of o-xylylene intermediates followed by their inter-
molecular trappings with electron-deficient olefins or acety
lenes is illustrated as follows. To a stirring solution of 172 mg 
(0.63 mmol) of o-(trimethylsilylmethyl)benzyltrimethylam-
monium chloride (Ia-Cl, R = H)5 and 0.16 g (1.9 mmol) of 
methyl acrylate in 5 mL of methylene chloride, a solution of 
215 mg (0.82 mmol) of tetrabutylammonium fluoride in 5 mL 
of methylene chloride was added dropwise at room tempera
ture over 0.5 h. After the mixture was stirred for 1 h at room 
temperature, ether was added and the mixture was washed 
with water and dried over anhydrous Na2SC>4. The ether so
lution was evaporated in vacuo and chromatographed on silica 
gel to produce l,2,3,4-tetrahydro-2-carbomethoxynaphthalene 
(3-iii)le [TLC (1:1 chloroform-benzene), Rf = 0.52] in a 90% 
yield. When Ia-Cl was reacted with tetrabutylammonium 

fluoride in the absence of methyl acrylate, spiro[di-o-xylylene] 
(5)6 was produced in a 64% isolated yield. Use of o-(trimeth-
ylsilylmethyl)benzyl chloride instead of la in the above pro
cedure furnished a similar result but in a slightly decreased 
yield. 

The most attractive feature of the present method for gen
eration of o-xylylene intermediates is that a-substituted 0-
xylylenes are generated in situ from o(a-trimethylsilylal-
kyl)benzyltrimethylammonium halides (lb-e), which are 

1) 1 equiv of n-BuLi, 

OX, THF CH2SiMe3 

CH2NMe2 2) RI 

R 
I 
CHSiMe, 

CH2NMe2 

R 

MeX HSiMe 

2' 

R=CH3, X=I 

R=CHn(CHo JoCrU, 

R=CH2(CH2I4CH3, 

R=CH2(CH2J3CH=CH2 

Overall Yield (%) 

56 

X=I 75 

X=I 72 

X = I 75 
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readily derived via alkylation of the silyl-stabilized anion of 
o-(trimethylsilylmethyl)benzyldimethylamine (6)7 and the 
subsequent quaternalization with methyl halides. 

Reaction of o-(a-trimethylsilylpentyl)benzyltrimeth-
ylammonium iodide (Ic) with methyl acrylate was similarly 
caused by tetrabutylammonium fluoride to afford 1,2,3,4-
tetrahydro-cw-1 -butyl-2-carbomethoxynaphthalene (3-v)'° 
as a major product in 88% yield. Some examples of cycload-
ditions of o-xylylene intermediates with olefins and acetylenes 
are summarized in Table I. 

The present method for generation of o-xylylenes and their 
trappings with olefins can be extended to intramolecular cy-
cloaddition of o-xylylenes leading to polycycles. When a so
lution of 145 mg (0.55 mmol) of tetrabutylammonium fluoride 
in 10 mL of acetonitrile was added dropwise over 1 h to a re-
fluxing solution of 225 mg (0.44 mmol) of o-(l-trimethylsil-
ylhept-6-enyl)benzyltrimethylammonium iodide (Ie)" in 5 
mL of acetonitrile, ;ro«5-octahydrophenanthrene (8)12 was 

, ^ _ «9 
8 

produced in 70% yield together with an 8% yield of the corre
sponding spiro[di-o-xylylene] derivative (9).13 We plan to 
report further studies on this reaction and its application to the 
synthesis of steroidal structure in the near future. 
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stereochemistry of 8 was convincingly confirmed by comparison of its 13C 
NMR spectrum with that of frans-octahydrophenanthrene, which was 
provided by Professor Vollhardt. 

(13) Structure A was assigned to compound 9 on the basis of its IR and NMR 
spectra: IR (neat) 1640, 995, 909, 755 cm - 1 ; NMR (CDCI3 with Me4Si) 5 
1.0-3.0 (m, 21 H), 4.6-6.5 (m, 11 H), 6.9-7.2 (m, 4 H). A possibility of the 
regioisomeric structure (B) for 9 was excluded by lack of IR absorption band 
at 890 c m - 1 characteric of the exo-methylene structure. 

«5r ô r 
(14) 3-i: NMR (100 MHz) (CDCI3 with Me4Si) 5 1.28 (t, 6 H), 3.01 (br t, 2 H), 3.17 

(brd, 4H), 4.21 (t, 4 H), 7.05 (S, 4 H). 
(15) Dehydrogenation of 3-iv by palladium on charcoal gave 1-methyl-2-cya-

nonaphthalene. 3-iv: NMR (CDCI3 with Me4Si) <5 1.45 (d, 3 H), 1.8-2.3 (m, 
2 H), 2.6-3.3 (m, 4 H), 7.05 (br S, 4 H). 

(16) 4-ii: NMR (100 MHz) (CDCI3 with Me4Si) 8 0.7-1.1 (m, 3 H), 1.1-1.2 (m, 10 
H), 2.9-3.7 (m, 2 H), 3.52-3.82 (4s, 6 H), 7.0-7.4 (m, 4 H), 7.56 and 7.61 
(2s, 1 H, olefinic proton). 
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Palladium(II) Chloride Catalyzed 
Cope Rearrangements of Acyclic 1,5-Dienes1 

Sir: 

The Cope rearrangement of 1,5-dienes typically requires 
elevated temperatures.2 Catalytic methods for effecting this 
carbon-carbon-bond-forming transformation enhance its 
synthetic utility, and in recent years impressive accomplish
ments have been recorded in catalyzing Cope rearrangements 
of functionalized 1,5-dienes.3 The development of more general 
methods for catalyzing the rearrangement of simple 1,5-dienes 
remains, however, a challenging problem.4 In 1966 Jonassen 
and co-workers7a reported that treatrhent of excess cis.trans-
1,5-cyclodecadiene at room temperature with bis(benzoni-
trile)palladium(II) chloride gave the crystalline palladium(II) 
dichloride complex of m-l,2-divinylcyclohexane in 82% 
yield.7,8 The similar rearrangement of m-l,2-divinylcyclo-
butanes to give palladium(II) dichloride complexes of 1,5-
cyclooctadienes has been extensively studied by Heimbach and 
co-workers.9 These studies,7"9 while clearly demonstrating that 
stoichiometric amounts of palladium(II) chloride can promote 
the Cope rearrangement of strained cyclic 1,5-dienes, leave 
unanswered questions of the generality or potential catalytic 
nature of this reaction. In this communication we report for 
the first time that palladium(II) promoted Cope rearrange
ments can be conducted in a catalytic fashion to produce the 
rearranged diene, rather than the diene-palladium(II) di
chloride complex. We moreover report that Cope rearrange
ments of many unstrained, conformationally flexible, acyclic 
1,5-dienes are dramatically catalyzed by palladium(II) 
chloride salts and occur readily at room temperature. 

Treatment of 2-methyl-3-phenyl-l,5-hexadiene (1) l0 with 
0.06 equiv of PdCl2(PhCN)2 in tetrahydrofuran (THF) at 
room temperature for 24 h produced dienes 21 l,12a and 31 ' in 
a 93:7 ratio (87% yield after bulb-to-bulb distillation). In 
contrast, thermal Cope rearrangement of diene 1 required 
elevated temperatures (half-life, 13 h; 177 0C; C6D6 solvent) 
and proceeded less stereoselectively, to yield 2 and 3 in a 
kinetically controlled13 3:1 ratio. Although the 1H NMR, IR, 
and mass spectra for stereoisomers 2 and 3 are nearly identical, 
stereochemical assignments follow unambiguously from 13C 
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